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Two new equations, based on the Domb-Barrett and Kurata theories of excluded vohJme, have been 
proposed to estimate unperturbed dimensions of chain molecules in solution from the viscosity- 
molecular weight data of polymers in good solvents. The fifth-power type equations of excluded 
volume theories by Domb and Barrett, Kurata, and Flory have been compared using the experimental 
data on several polymers. It has been found that the Domb-Barrett theory not only reliably yields 
the unperturbed dimensions of polymers but also adequately measures the solvent-polymer inter- 
action parameter. 

Since the introduction o f  the concept of  excluded volume 
(long range intramolecular interactions) in dilute polymer  
solutions by Flory ~, a number of  attempts have been made 
to describe this characteristic effect o f  linear flexible chain 
molecules within the frame work of  the two parameter 
theory. All the theories correlate the expansion factor (a)  
of  a polymer  chain with the excluded volume parameter 
(z) leading to the asymptotic form: 

l i m t r  v = constant z ( I )  
g - - }  oo 

where x is a constant independent ofz.  Several values be- 
tween 1 and 6.67 for x have been predicted as reviewed by 
Yamakawa 2. The examination of  an asymptotic solution of 
a at large z based on the self-consistent field approach, and 
the exact enumeration of  non-intersecting walks in three- 
dimensional lattices, as discussed by Yamakawa 2, consider 
the fifth-power (x = 5) type equations fairly satisfactory in 
describing the behaviour of  a over the range of  z experimen- 
tally accessible. 

Very recently Domb and Barrett 3 have proposed a new 
formula correlating a and z within the framework of  the 
two parameter theory. Their approach is based on critical 
point thermodynamics. By combining the exact enumera- 
tion data on non-intersecting walks on three-dimensional 
lattices with the virial expansion they arrived at the follow- 
ing formula: 

20 
a 1 0  = 1 + - -  z + 41rz 2 (2) 

3 

with 

a2 = (R 2)/(R 2)o 

z = fin 1/2 

where (R 2) and (R2)0 are the mean square end-to-end dis- 
tances of  a polymer chain in perturbed (with excluded 
volume effect) and unperturbed (zero excluded volume, i.e. 

at 0-conditions) states, respectively, a is the effective bond 
length, n is the number of  bonds in a chain molecule and/3 
is the binary cluster integral having the dimension of  volume. 
Equation (2) is a fifth-power type equation. The aim of  the 
present communication is to test equation (2) with the ex- 
perimental data and compare with other fifth-power type 
equations. 

The intrinsic viscosity [r/] may be expressed in the form: 

[7/1 =KM1/Za3 (3) 

with 

K = qb0A 3 (4) 

A 2 = (R2)o/M (5) 

where ~0 is the universal constant, K is the measure of  un- 
perturbed dimensions of  the chains of  molecular weight M, 
and a n is the expansion factor derived from viscosity mea- 
surements. For convenience we rewrite the excluded para- 
meter  z as follows: 

z. = 0.33~boBM1/2/K (6) 

where B is the solvent-polymer  interaction parameter. 
The factor a n must become unity as the molecular 

weight tends to zero, for a n = 1 at z = 0. The excluded 
volume effect, therefore, decreases with decreasing molecu- 
lar weight. This suggests that the value of  K may be ob- 
tained by extrapolation to zero molecular weight from vis- 
cosity data in good solvents. We assume that a = a n and 
this does not lead to any error in the comparison of  the 
theories. 

The Domb-Bar re t t  relation, equation (2), is a quadratic 
equation in z. The plausible solution of  this quadratic 
equation leads to the following relation: 

20 
4rrz + - -  = 3.33 + [I1.1 + 12.56(a 10 - 1)] 1/2 = g l ( a )  

3 
(7) 

Now, the Domb-Bar re t t  relation reads as follows: 
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Figure I The Domb--Barrett plots, from equation (9), for sodium 
amylose sulphate 6 in aqueous NaCI solutions of molariW: [:3, 0.04 M 
(v = 0.77); O, 0.08 M (v = 0.69); A, 0.10 M (v = 0.67); U, 0.15 M 
(v = 0.62); O, 0.30 M (v = 0.54); &, 0.50 M (v = 0.50), at 33°C 

~10= 1 +Zgl(~ ) (8) 

which on combination with equations (3) and (6) yields: 

[171 ~ 10/3 
M-i~] = K10/3 + 0"33~0BK7/3 [gl(a)Ml/2] (9) 

Similarly, the Kurata theory 4 of excluded volume: 

1 1 4 
5- (aS _ 1) + ~ (a3 _ 1) = ~ z (10) 

may be rearranged as given below: 

a3(3~ 2 + 5)/8 = 1 + 2.5z (11) 

On combining equation (11) with equations (3) and (6), we 
obtain: 

[r/] + 0.825¢0BM1/2 
M1/2 g2(a) = g 

(12) 

with 

g2(tv) = (3ix 2 + 5)/8 (13) 

The well known Flory-Fox-Schaefgen relation s derived 
from Fiory's excluded volume theory1: 

a5 _a3  = 2.60z (14) 

is given by: 

[r/] 2/3 = K 2/3 + 0.858K2/3¢oB __M (15) 
M1/3 [r/] 

Equations (2), (10) and (14) are fifth-power type due to 
Domb and Barrett 3, Kurata 4 and Flory 1, and the correspond- 
ing [~] - M  relations are given by equations (9), (12) and 
(15). According to equation (9), a plot of ( [7/] /311/2) 10/3 
against gl(a)M I/2 should be linear and yield an intercept 
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equal to K 10/3 which is a measure of unperturbed dimen- 
sions of the polymer chains in solution. First ([*t]/1~1/2) 10/3 
against 6.66 M!/2 [since gl(a) = 6.66 for a = 1 ] is plotted 
to find a first order approximate value of K, and then re- 
plotted ( [r/]/Ml12) 107~ against gl(~)M 1/2, where gl(a) is 
calculated from equations (3) and (7) with the first order 
value of K. The process of plotting is repeated till a con- 
stant value of K is obtained. Similarly, following the itera- 
tion method, [r~] g2(ot)/M 1/2 against M 1/2 is plotted accord- 
ing to equation (12) to estimate the unperturbed dimensions. 

The viscosity-molecular weight data 6 on sodium amy- 
lose sulphate in aqueous solutions with added simple salt, 
NaCI, at 33°C are used to determine the molecular dimen- 
sions of the chains in the unperturbed state applying three 
of the fifth-power type equations. It is noted that sodium 
amylose sulphate in the presence of a sufficient amount of 
added salt behaves like a non-ionic polymer in solution. 
Further, we consider [7] - M  data such that v < 0.8 (in 
[r/] = KM v) since the upper limit of validity of the fifth- 
power type equations is v = 0.8. 

Figures 1-3  show the plots due to equations (9), (12) 
and (15) respectively, for sodium amylose sulphate in 
aqueous salt solutions at 33°C. The concentration range 
0.04-0.30 M of NaCI solution is considered to show the 
effect of solvent power on the plots. The corresponding 
range of v covered is 0.77-0.50. All solvent lines in 
Figure I are linear plots giving a common intercept on the 
ordinate, and this is in excellent agreement with the results 
of the 0-experiment. Again linear plots are observed in 

2.6 

~_O 2.2 

~ =  1"8 

~ I-4 

I'O 

21o 4!o 6!o 6'.o ,6.o 
MwV2X iO "2 

Figure 2 The Kurata plots, from equation (12), for the data in 
Figure 1 
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Figure 3 The Flory--Fox--Schaafgen plots, from equation (15), 
for the data in Figure I 
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Table 1 The values of solvent-polymer interaction parameter 
(B X 1027 cm 3) for sodium amylose sulphate in aqueous sodium 
chloride solutions of different concentration at 33°C 

NaCl solutions (M) 

0.04 0.08 O. 15 0.30 

Equation (9) 1.42 0.79 0.40 0.12 
Equation (12) 1.54 0.81 0.39 0.11 
Equation (15) 6.19 1.09 0.19 0.06 
SF * 1.44 0.82 0.38 O. 10 

*Stockmayer-F ixman theory 12 

Figures 2 and 3 but the common intercept on the ordinate 
is not observed in either case. However, the common point 
of  intersection is observed in both cases as noted previously 7. 
It may be said that in good solvents the solvent-polymer 
interaction is over-estimated and hence equations (12) and 
(15) may not yield reliable unperturbed dimensions, par- 
ticularly from the viscosity data in good solvents. The com- 
parison of  the Figures, beyond any doubt,  establishes the 
superiority o f  equation (9) among the fifth-power type 
equations. The analysis of  the data on several other poly- 
mers: sodium carboxymethyl amylose a, amylose tripro- 
pionate 9, isotactic poly(butene-1)10, and poly(m-methyl- 
styrene) 11, supports the above observations. 

On the other hand, we evaluate the solvent-polymer 
interaction parameter B from the slope o f  lines in Figures 
1 - 3 ;  ~0 being 2.87 x 1023 cgs. The values of  B are tabu- 
lated in Table 1. In addition, Table I lists the values of  B 
obtained from the data on sodium amylose sulphate accord- 
ing to the Stockmayer-Fixman (SF) 12 theory which is 
based on the Fixman's excluded volume theory la (third- 
power type equation). Yamakawa 2 has shown that the esti- 
mate of  B from SF theory is comparable with that derived 
from light scattering measurements. The Table reveals that 
B values derived from equation (15), i.e. from the slope o f  
lines in Figure 3, are much higher in good solvents and 

lower in poor solvents than that derived from the rest of  
the equations. The B values derived from equations (9) and 
(12) compare satisfactorily with that from the SF theory 
in all solvents. 

Thus, in view of  the determination of  unperturbed 
dimensions o f  polymer chains and solvent-polymer inter- 
actions, the Domb-Barre t t  equation seems most promising. 
The Kurata theory estimates reliable solvent-polymer 
interactions, although the estimated unperturbed dimen- 
sions are only approximate. The Flory theory in its origi- 
nal form is quite unsatisfactory for both the parameters as 
observed by others 2'14. It seems from the present analysis 
that the theories based on the assumed form of the binary 
cluster integral are inferior to the theory based on more 
realistic enumeration data on non-intersecting walks and the 
virial expansion. 
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